Pressure-Induced Polymorphic, Optical, and Electronic Transitions of Formamidinium Lead Iodide Perovskite.
نویسندگان
چکیده
Formamidinium lead iodide (FAPbI3) perovskite as a superior solar cell material was investigated in two polymorphs at high pressures using in situ synchrotron X-ray diffraction, FTIR spectroscopy, photoluminescence (PL) spectroscopy, electrical conductivity (EC) measurements, and ab initio calculations. We identified two new structures (i.e., Imm2 and Immm) for α-FAPbI3 but only a structural distortion (in C2/c) for δ-FAPbI3 upon compression. A pressure-enhanced hydrogen bond plays a prominent role in structural modifications, as corroborated by FTIR spectroscopy. PL measurements and calculations consistently show the structure and pressure dependences of the band gap energies. Finally, EC measurements reveal drastically different transport properties of α- and δ-FAPbI3 at low pressures but a common trend to metallic states at high pressures. All of these observations suggest strongly contrasting structural stabilities and pressure-tuned optoelectric properties of the two FAPbI3 polymorphs.
منابع مشابه
Temperature Dependent Charge Carrier Dynamics in Formamidinium Lead Iodide Perovskite
The fundamental opto-electronic properties of organic-inorganic hybrid perovskites are strongly affected by their structural parameters. These parameters are particularly critical in formamidinium lead iodide (FAPbI3), in which its large structural disorder leads to a non-perovskite yellow phase that hinders its photovoltaic performance. A clear understanding of how the structural parameters af...
متن کاملStable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03542f Click here for additional data file.
Although formamidinium lead iodide (FAPbI3) perovskite has shown great promise in the field of perovskitebased optoelectronic devices, it suffers the complications of a structural phase transition from a black perovskite phase (a-FAPbI3) to a yellow non-perovskite phase (d-FAPbI3). Generally, it is pivotal to avoid d-FAPbI3 since only a-FAPbI3 is desirable for photoelectric conversion and near-...
متن کاملDirect Laser Writing of δ- to α-Phase Transformation in Formamidinium Lead Iodide
Organolead halide perovskites are increasingly considered for applications well beyond photovoltaics, for example, as the active regions within photonic devices. Herein, we report the direct laser writing (DLW: 458 nm cw-laser) of the formamidinium lead iodide (FAPbI3) yellow δ-phase into its high-temperature luminescent black α-phase, a remarkably easy and scalable approach that takes advantag...
متن کاملEntropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite
A challenge of hybrid perovskite solar cells is device instability, which calls for an understanding of the perovskite structural stability and phase transitions. Using neutron diffraction and first-principles calculations on formamidinium lead iodide (FAPbI3), we show that the entropy contribution to the Gibbs free energy caused by isotropic rotations of the FA+ cation plays a crucial role in ...
متن کاملStability Issues on Perovskite Solar Cells
Organo lead halide perovskite materials like methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide (HC(NH2)2PbI3) show superb opto-electronic properties. Based on these perovskite light absorbers, power conversion efficiencies of the perovskite solar cells employing hole transporting layers have increased from 9.7% to 20.1% within just three years. Thus, it is apparent that pero...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 8 10 شماره
صفحات -
تاریخ انتشار 2017